Talk by Lisa Dunlap, Ph.D. Student, UC Berkeley
Soroco is building a work graph to help enterprises understand how they do digital work at the user level. Soroco’s technology Scout performs process and task discovery to find patterns in the data which represent business steps conducted by users, which helps annotate the work graph with the business context of how teams conduct processes.
Soroco’s Machine Learning algorithms classify user activities into processes and tasks but when our models suggest that a set of user activities should be attributed to a particular process, it helps to understand why the models think so. Explainable insights can help us provide more accurate predictions while also empowering our customers to highlight information that can help us identify their processes better. That’s where we think the work presented by Lisa is pertinent to what we do.
A deeper knowledge of the day-to-day tasks and processes enables teams to identify their pain points, bottlenecks, and discover the variations in the way processes are performed. Teams can then standardize their processes, address their system or process bottlenecks, and even automate repetitive tasks to improve their efficiency.
Optimizing for interpretability also optimizes for accuracy
The last and most interesting contribution of the paper is how they improve both the accuracy and the interpretability of the Neural networks by adding a Tree Supervision Loss. The tree supervision loss is a cross entropy loss that encourages the network to predict the right path in the dendrogram with a higher probability. This loss ended up improving both explainability and the accuracy of the model.
Cookie | Duration | Description |
---|---|---|
cookielawinfo-checkbox-analytics | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics". |
cookielawinfo-checkbox-functional | 11 months | The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional". |
cookielawinfo-checkbox-necessary | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary". |
cookielawinfo-checkbox-others | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other. |
cookielawinfo-checkbox-performance | 11 months | This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance". |
viewed_cookie_policy | 11 months | The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data. |